Reproduction of: Rapidly measuring spatial accessibility of COVID-19 healthcare resources: a case study of Illinois, USA
Original study by Kang, J. Y., A. Michels, F. Lyu, Shaohua Wang, N. Agbodo, V. L. Freeman, and Shaowen Wang. 2020. Rapidly measuring spatial accessibility of COVID-19 healthcare resources: a case study of Illinois, USA. International Journal of Health Geographics 19 (1):1–17. DOI:10.1186/s12942-020-00229-x.
Reproduction Authors: Joe Holler, Derrick Burt, Kufre Udoh, and Grayson Shanley Barr With contributions from Peter Kedron, Drew An-Pham, and the Spring 2021 and Fall 2023 Open Source GIScience class at Middlebury
Reproduction Materials Available at: github.com/HEGSRR/RPr-Kang-2020
Created: 2021-06-01
Revised: 2023-11-15
by Grayson Shanley Barr, Middlebury College
To perform the ESFCA method, three types of data are required, as follows: (1) road network, (2) population, and (3) hospital information. The road network can be obtained from the OpenStreetMap Python Library, called OSMNX. The population data is available on the American Community Survey. Lastly, hospital information is also publically available on the Homelanad Infrastructure Foundation-Level Data.
Import necessary libraries to run this model.
See environment.yml
for the library versions used for this analysis.
# Import modules
import numpy as np
import pandas as pd
import geopandas as gpd
import networkx as nx
import osmnx as ox
import re
from shapely.geometry import Point, LineString, Polygon
import matplotlib.pyplot as plt
from tqdm import tqdm
import multiprocessing as mp
import folium
import itertools
import os
import time
import warnings
import IPython
import requests
from IPython.display import display, clear_output
warnings.filterwarnings("ignore")
print('\n'.join(f'{m.__name__}=={m.__version__}' for m in globals().values() if getattr(m, '__version__', None)))
numpy==1.22.0 pandas==1.3.5 geopandas==0.10.2 networkx==2.6.3 osmnx==1.1.2 re==2.2.1 folium==0.12.1.post1 IPython==8.3.0 requests==2.27.1
Because we have restructured the repository for replication, we need to check our working directory and make necessary adjustments.
# Check working directory
os.getcwd()
'/home/jovyan/work/RPr-Kang-2020/procedure/code'
# Use to set work directory properly
if os.path.basename(os.getcwd()) == 'code':
os.chdir('../../')
os.getcwd()
'/home/jovyan/work/RPr-Kang-2020'
If you would like to use the data generated from the pre-processing scripts, use the following code:
covid_data = gpd.read_file('./data/raw/public/Pre-Processing/covid_pre-processed.shp')
atrisk_data = gpd.read_file('./data/raw/public/Pre-Processing/atrisk_pre-processed.shp')
# Read in at risk population data
atrisk_data = gpd.read_file('./data/raw/public/PopData/Illinois_Tract.shp')
atrisk_data.head()
GEOID | STATEFP | COUNTYFP | TRACTCE | NAMELSAD | Pop | Unnamed_ 0 | NAME | OverFifty | TotalPop | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 17091011700 | 17 | 091 | 011700 | Census Tract 117 | 3688 | 588 | Census Tract 117, Kankakee County, Illinois | 1135 | 3688 | POLYGON ((-87.88768 41.13594, -87.88764 41.136... |
1 | 17091011800 | 17 | 091 | 011800 | Census Tract 118 | 2623 | 220 | Census Tract 118, Kankakee County, Illinois | 950 | 2623 | POLYGON ((-87.89410 41.14388, -87.89400 41.143... |
2 | 17119400951 | 17 | 119 | 400951 | Census Tract 4009.51 | 5005 | 2285 | Census Tract 4009.51, Madison County, Illinois | 2481 | 5005 | POLYGON ((-90.11192 38.70281, -90.11128 38.703... |
3 | 17119400952 | 17 | 119 | 400952 | Census Tract 4009.52 | 3014 | 2299 | Census Tract 4009.52, Madison County, Illinois | 1221 | 3014 | POLYGON ((-90.09442 38.72031, -90.09360 38.720... |
4 | 17135957500 | 17 | 135 | 957500 | Census Tract 9575 | 2869 | 1026 | Census Tract 9575, Montgomery County, Illinois | 1171 | 2869 | POLYGON ((-89.70369 39.34803, -89.69928 39.348... |
# Read in covid case data
covid_data = gpd.read_file('./data/raw/public/PopData/Chicago_ZIPCODE.shp')
covid_data['cases'] = covid_data['cases']
covid_data.head()
ZCTA5CE10 | County | State | Join | ZONE | ZONENAME | FIPS | pop | cases | geometry | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 60660 | Cook County | IL | Cook County IL | IL_E | Illinois East | 1201 | 43242 | 78 | POLYGON ((-87.65049 41.99735, -87.65029 41.996... |
1 | 60640 | Cook County | IL | Cook County IL | IL_E | Illinois East | 1201 | 69715 | 117 | POLYGON ((-87.64645 41.97965, -87.64565 41.978... |
2 | 60614 | Cook County | IL | Cook County IL | IL_E | Illinois East | 1201 | 71308 | 134 | MULTIPOLYGON (((-87.67703 41.91845, -87.67705 ... |
3 | 60712 | Cook County | IL | Cook County IL | IL_E | Illinois East | 1201 | 12539 | 42 | MULTIPOLYGON (((-87.76181 42.00465, -87.76156 ... |
4 | 60076 | Cook County | IL | Cook County IL | IL_E | Illinois East | 1201 | 31867 | 114 | MULTIPOLYGON (((-87.74782 42.01540, -87.74526 ... |
Note that 999 is treated as a "NULL"/"NA" so these hospitals are filtered out. This data contains the number of ICU beds and ventilators at each hospital.
# Read in hospital data
hospitals = gpd.read_file('./data/raw/public/HospitalData/Chicago_Hospital_Info.shp')
hospitals.head()
FID | Hospital | City | ZIP_Code | X | Y | Total_Bed | Adult ICU | Total Vent | geometry | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | Methodist Hospital of Chicago | Chicago | 60640 | -87.671079 | 41.972800 | 145 | 36 | 12 | MULTIPOINT (-87.67108 41.97280) |
1 | 4 | Advocate Christ Medical Center | Oak Lawn | 60453 | -87.732483 | 41.720281 | 785 | 196 | 64 | MULTIPOINT (-87.73248 41.72028) |
2 | 13 | Evanston Hospital | Evanston | 60201 | -87.683288 | 42.065393 | 354 | 89 | 29 | MULTIPOINT (-87.68329 42.06539) |
3 | 24 | AMITA Health Adventist Medical Center Hinsdale | Hinsdale | 60521 | -87.920116 | 41.805613 | 261 | 65 | 21 | MULTIPOINT (-87.92012 41.80561) |
4 | 25 | Holy Cross Hospital | Chicago | 60629 | -87.690841 | 41.770001 | 264 | 66 | 21 | MULTIPOINT (-87.69084 41.77000) |
# Plot hospital data
m = folium.Map(location=[41.85, -87.65], tiles='cartodbpositron', zoom_start=10)
for i in range(0, len(hospitals)):
folium.CircleMarker(
location=[hospitals.iloc[i]['Y'], hospitals.iloc[i]['X']],
popup="{}{}\n{}{}\n{}{}".format('Hospital Name: ',hospitals.iloc[i]['Hospital'],
'ICU Beds: ',hospitals.iloc[i]['Adult ICU'],
'Ventilators: ', hospitals.iloc[i]['Total Vent']),
radius=5,
color='blue',
fill=True,
fill_opacity=0.6,
legend_name = 'Hospitals'
).add_to(m)
legend_html = '''<div style="position: fixed; width: 20%; heigh: auto;
bottom: 10px; left: 10px;
solid grey; z-index:9999; font-size:14px;
"> Legend<br>'''
m
# Read in and plot grid file for Chicago
grid_file = gpd.read_file('./data/raw/public/GridFile/Chicago_Grid.shp')
grid_file.plot(figsize=(8,8))
<AxesSubplot:>
If Chicago_Network_Buffer.graphml
does not already exist, this cell will query the road network from OpenStreetMap.
Each of the road network code blocks may take a few mintues to run.
%%time
# To create a new graph from OpenStreetMap, delete or rename data/raw/private/Chicago_Network_Buffer.graphml
# (if it exists), and set OSM to True
OSM = False
# if buffered street network is not saved, and OSM is preferred, # generate a new graph from OpenStreetMap and save it
if not os.path.exists("./data/raw/private/Chicago_Network_Buffer.graphml") and OSM:
print("Loading buffered Chicago road network from OpenStreetMap. Please wait... runtime may exceed 9min...", flush=True)
G = ox.graph_from_place('Chicago', network_type='drive', buffer_dist=24140.2)
print("Saving Chicago road network to raw/private/Chicago_Network_Buffer.graphml. Please wait...", flush=True)
ox.save_graphml(G, './data/raw/private/Chicago_Network_Buffer.graphml')
print("Data saved.")
# otherwise, if buffered street network is not saved, download graph from the OSF project
elif not os.path.exists("./data/raw/private/Chicago_Network_Buffer.graphml"):
print("Downloading buffered Chicago road network from OSF...", flush=True)
url = 'https://osf.io/download/z8ery/'
r = requests.get(url, allow_redirects=True)
print("Saving buffered Chicago road network to file...", flush=True)
open('./data/raw/private/Chicago_Network_Buffer.graphml', 'wb').write(r.content)
# if the buffered street network is already saved, load it
if os.path.exists("./data/raw/private/Chicago_Network_Buffer.graphml"):
print("Loading buffered Chicago road network from raw/private/Chicago_Network_Buffer.graphml. Please wait...", flush=True)
G = ox.load_graphml('./data/raw/private/Chicago_Network_Buffer.graphml')
print("Data loaded.")
else:
print("Error: could not load the road network from file.")
Loading buffered Chicago road network from OpenStreetMap. Please wait... runtime may exceed 9min... Saving Chicago road network to raw/private/Chicago_Network_Buffer.graphml. Please wait... Data saved. Loading buffered Chicago road network from raw/private/Chicago_Network_Buffer.graphml. Please wait... Data loaded. CPU times: user 5min 49s, sys: 4.79 s, total: 5min 54s Wall time: 5min 56s
%%time
ox.plot_graph(G, node_size = 1, bgcolor = 'white', node_color = 'black', edge_color = "#333333", node_alpha = 0.5, edge_linewidth = 0.5)
CPU times: user 53.6 s, sys: 170 ms, total: 53.7 s Wall time: 53.5 s
(<Figure size 576x576 with 1 Axes>, <AxesSubplot:>)
Display all the unique speed limit values and count how many network edges (road segments) have each value. We will compare this to our cleaned network later.
%%time
# Turn nodes and edges into geodataframes
nodes, edges = ox.graph_to_gdfs(G, nodes=True, edges=True)
# Get unique counts of road segments for each speed limit
print(edges['maxspeed'].value_counts())
print(str(len(edges)) + " edges in graph")
# can we also visualize highways / roads with higher speed limits to check accuracy?
# the code above converts the graph into an edges geodataframe, which could theoretically be filtered
# by fast road segments and mapped, e.g. in folium
25 mph 6016 30 mph 4873 35 mph 4803 20 mph 3621 40 mph 2842 45 mph 2423 55 mph 876 60 mph 293 50 mph 287 15 mph 107 70 mph 79 [40 mph, 45 mph] 54 10 mph 44 [35 mph, 30 mph] 36 65 mph 36 [40 mph, 35 mph] 36 [35 mph, 45 mph] 34 [55 mph, 45 mph] 29 45,30 24 [50 mph, 45 mph] 19 25 14 25, east 14 [30 mph, 25 mph] 13 [40 mph, 30 mph] 11 [35 mph, 20 mph] 6 [35 mph, 25 mph] 6 [55 mph, 60 mph] 5 [65 mph, 60 mph] 5 [20 mph, 25 mph] 4 20 4 [55 mph, 65 mph] 4 [60 mph, 70 mph] 4 [50 mph, 55 mph] 3 [50 mph, 40 mph] 3 [40 mph, 35 mph, 45 mph] 3 [50 mph, 55 mph, 45, east] 2 [60 mph, 45 mph] 2 [40 mph, 35 mph, 25 mph] 2 5 mph 2 [25, east, 30 mph] 2 [50 mph, 55 mph, 45 mph] 2 [15 mph, 45 mph] 2 [15 mph, 25 mph] 2 [30 mph, 45 mph] 2 [40 mph, 30 mph, 15 mph] 2 [30 mph, 15 mph] 2 [5 mph, 35 mph] 2 [45mph, 45 mph] 1 [20 mph, 30 mph] 1 [5 mph, 45 mph, 70 mph] 1 [70 mph, 5 mph, 45 mph] 1 [55 mph, 35 mph] 1 [40 mph, 35 mph, 55 mph] 1 [55 mph, 35 mph, 40 mph] 1 [15 mph, 15] 1 Name: maxspeed, dtype: int64 384974 edges in graph CPU times: user 33.1 s, sys: 38.7 ms, total: 33.1 s Wall time: 33.1 s
edges.head()
osmid | oneway | lanes | ref | name | highway | maxspeed | length | geometry | bridge | tunnel | access | junction | width | area | service | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
u | v | key | ||||||||||||||||
738776 | 768967302 | 0 | [61699092, 918557247] | True | [5, 4] | I 294 | Tri-State Tollway | motorway | 55 mph | 467.708 | LINESTRING (-87.68109 41.58525, -87.68096 41.5... | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
738920 | 348225363 | 0 | [61431949, 31298719] | True | 5 | I 80;I 94 | Kingery Expressway | motorway | 55 mph | 1220.747 | LINESTRING (-87.56225 41.57764, -87.55790 41.5... | yes | NaN | NaN | NaN | NaN | NaN | NaN |
739113 | 1875082688 | 0 | 60862616 | True | 2 | NaN | NaN | motorway_link | NaN | 549.609 | LINESTRING (-87.34349 41.56738, -87.34277 41.5... | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
739130 | 0 | 292493273 | True | 4 | I 80;I 94;US 6 | Borman Expressway | motorway | 55 mph | 1191.046 | LINESTRING (-87.34349 41.56738, -87.34104 41.5... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
739117 | 739113 | 0 | 292493271 | True | 5 | I 80;I 94;US 6 | Borman Expressway | motorway | 55 mph | 381.798 | LINESTRING (-87.34806 41.56768, -87.34689 41.5... | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Cleans the OSMNX network to work better with drive-time analysis.
First, we remove all nodes with 0 outdegree because any hospital assigned to such a node would be unreachable from everywhere. Next, we remove small (under 10 node) strongly connected components to reduce erroneously small ego-centric networks. Lastly, we ensure that the max speed is set and in the correct units before calculating time.
Args:
Returns:
# two things about this function:
# 1) the work to remove nodes is hardly worth it now that OSMnx cleans graphs by default
# the function is now only pruning < 300 nodes
# 2) try using the OSMnx speed module for setting speeds, travel times
# https://osmnx.readthedocs.io/en/stable/user-reference.html#module-osmnx.speed
# just be careful about units of speed and time!
# the remainder of this code expects 'time' to be measured in minutes
def network_setting(network):
_nodes_removed = len([n for (n, deg) in network.out_degree() if deg ==0])
network.remove_nodes_from([n for (n, deg) in network.out_degree() if deg ==0])
for component in list(nx.strongly_connected_components(network)):
if len(component)<10:
for node in component:
_nodes_removed+=1
network.remove_node(node)
for u, v, k, data in tqdm(G.edges(data=True, keys=True),position=0):
if 'maxspeed' in data.keys():
speed_type = type(data['maxspeed'])
if (speed_type==str):
# Add in try/except blocks to catch maxspeed formats that don't fit Kang et al's cases
try:
if len(data['maxspeed'].split(','))==2:
data['maxspeed_fix']=float(data['maxspeed'].split(',')[0])
elif data['maxspeed']=='signals':
data['maxspeed_fix']=30.0 # drive speed setting as 35 miles
else:
data['maxspeed_fix']=float(data['maxspeed'].split()[0])
except:
data['maxspeed_fix']=30.0 #miles
else:
try:
data['maxspeed_fix']=float(data['maxspeed'][0].split()[0])
except:
data['maxspeed_fix']=30.0 #miles
else:
data['maxspeed_fix']=30.0 #miles
data['maxspeed_meters'] = data['maxspeed_fix']*26.8223 # convert mile per hour to meters per minute
data['time'] = float(data['length'])/ data['maxspeed_meters'] # meters / meters per minute = minutes
print("Removed {} nodes ({:2.4f}%) from the OSMNX network".format(_nodes_removed, _nodes_removed/float(network.number_of_nodes())))
print("Number of nodes: {}".format(network.number_of_nodes()))
print("Number of edges: {}".format(network.number_of_edges()))
return(network)
%%time
# G, hospitals, grid_file, pop_data = file_import (population_dropdown.value)
G = network_setting(G)
# Create point geometries for each node in the graph, to make constructing catchment area polygons easier
for node, data in G.nodes(data=True):
data['geometry']=Point(data['x'], data['y'])
# Modify code to react to processor dropdown (got rid of file_import function)
100%|██████████| 384591/384591 [00:01<00:00, 373515.30it/s]
Removed 315 nodes (0.0022%) from the OSMNX network Number of nodes: 142777 Number of edges: 384591 CPU times: user 4.44 s, sys: 299 ms, total: 4.74 s Wall time: 4.73 s
Display all the unique speed limit values and count how many network edges (road segments) have each value. Compare to the previous results.
%%time
## Get unique counts for each road network
# Turn nodes and edges in geodataframes
nodes, edges = ox.graph_to_gdfs(G, nodes=True, edges=True)
# Count
print(edges['maxspeed_fix'].value_counts())
print(str(len(edges)) + " edges in graph")
30.0 362858 25.0 6044 35.0 4885 20.0 3627 40.0 2950 45.0 2447 55.0 906 50.0 316 60.0 296 15.0 112 70.0 71 10.0 44 65.0 30 5.0 5 Name: maxspeed_fix, dtype: int64 384591 edges in graph CPU times: user 32.8 s, sys: 151 ms, total: 33 s Wall time: 32.9 s
def hospital_setting(hospitals, G):
# Create an empty column
hospitals['nearest_osm']=None
# Append the neaerest osm column with each hospitals neaerest osm node
for i in tqdm(hospitals.index, desc="Find the nearest network node from hospitals", position=0):
hospitals['nearest_osm'][i] = ox.get_nearest_node(G, [hospitals['Y'][i], hospitals['X'][i]], method='euclidean') # find the nearest node from hospital location
print ('hospital setting is done')
return(hospitals)
Converts geodata to centroids
Args:
Returns:
def pop_centroid (pop_data, pop_type):
pop_data = pop_data.to_crs({'init': 'epsg:4326'})
# If pop is selected in dropdown, select at risk pop where population is greater than 0
if pop_type =="pop":
pop_data=pop_data[pop_data['OverFifty']>=0]
# If covid is selected in dropdown, select where covid cases are greater than 0
if pop_type =="covid":
pop_data=pop_data[pop_data['cases']>=0]
pop_cent = pop_data.centroid # it make the polygon to the point without any other information
# Convert to gdf
pop_centroid = gpd.GeoDataFrame()
i = 0
for point in tqdm(pop_cent, desc='Pop Centroid File Setting', position=0):
if pop_type== "pop":
pop = pop_data.iloc[i]['OverFifty']
code = pop_data.iloc[i]['GEOID']
if pop_type =="covid":
pop = pop_data.iloc[i]['cases']
code = pop_data.iloc[i].ZCTA5CE10
pop_centroid = pop_centroid.append({'code':code,'pop': pop,'geometry': point}, ignore_index=True)
i = i+1
return(pop_centroid)
Function written by Joe Holler + Derrick Burt. It is a more efficient way to calculate distance-weighted catchment areas for each hospital. The algorithm runs quicker than the original one ("calculate_catchment_area"). It first creates a dictionary (with a node and its corresponding drive time from the hospital) of all nodes within a 30 minute drive time (using single_cource_dijkstra_path_length function). From here, two more dictionaries are constructed by querying the original one. From this dictionaries, single part convex hulls are created for each drive time interval and appended into a single list (one list with 3 polygon geometries). Within the list, the polygons are differenced from each other to produce three catchment areas.
Args:
Returns:
def dijkstra_cca_polygons(G, nearest_osm, distances, distance_unit = "time"):
'''
Before running: must assign point geometries to street nodes
# create point geometries for the entire graph
for node, data in G.nodes(data=True):
data['geometry']=Point(data['x'], data['y'])
'''
## CREATE DICTIONARIES
# create dictionary of nearest nodes
nearest_nodes_30 = nx.single_source_dijkstra_path_length(G, nearest_osm, distances[2], distance_unit) # creating the largest graph from which 10 and 20 minute drive times can be extracted from
# extract values within 20 and 10 (respectively) minutes drive times
nearest_nodes_20 = dict()
nearest_nodes_10 = dict()
for key, value in nearest_nodes_30.items():
if value <= 20:
nearest_nodes_20[key] = value
if value <= 10:
nearest_nodes_10[key] = value
## CREATE POLYGONS FOR 3 DISTANCE CATEGORIES (10 min, 20 min, 30 min)
# 30 MIN
# If the graph already has a geometry attribute with point data,
# this line will create a GeoPandas GeoDataFrame from the nearest_nodes_30 dictionary
points_30 = gpd.GeoDataFrame(gpd.GeoSeries(nx.get_node_attributes(G.subgraph(nearest_nodes_30), 'geometry')))
# This line converts the nearest_nodes_30 dictionary into a Pandas data frame and joins it to points
# left_index=True and right_index=True are options for merge() to join on the index values
points_30 = points_30.merge(pd.Series(nearest_nodes_30).to_frame(), left_index=True, right_index=True)
# Re-name the columns and set the geodataframe geometry to the geometry column
points_30 = points_30.rename(columns={'0_x':'geometry','0_y':'z'}).set_geometry('geometry')
# Create a convex hull polygon from the points
polygon_30 = gpd.GeoDataFrame(gpd.GeoSeries(points_30.unary_union.convex_hull))
polygon_30 = polygon_30.rename(columns={0:'geometry'}).set_geometry('geometry')
# 20 MIN
# Select nodes less than or equal to 20
points_20 = points_30.query("z <= 20")
# Create a convex hull polygon from the points
polygon_20 = gpd.GeoDataFrame(gpd.GeoSeries(points_20.unary_union.convex_hull))
polygon_20 = polygon_20.rename(columns={0:'geometry'}).set_geometry('geometry')
# 10 MIN
# Select nodes less than or equal to 10
points_10 = points_30.query("z <= 10")
# Create a convex hull polygon from the points
polygon_10 = gpd.GeoDataFrame(gpd.GeoSeries(points_10.unary_union.convex_hull))
polygon_10 = polygon_10.rename(columns={0:'geometry'}).set_geometry('geometry')
# Create empty list and append polygons
polygons = []
# Append
polygons.append(polygon_10)
polygons.append(polygon_20)
polygons.append(polygon_30)
# Clip the overlapping distance ploygons (create two donuts + hole)
for i in reversed(range(1, len(distances))):
polygons[i] = gpd.overlay(polygons[i], polygons[i-1], how="difference")
return polygons
Measures the effect of a single hospital on the surrounding area. (Uses dijkstra_cca_polygons
)
Args:
Returns:
def hospital_measure_acc (_thread_id, hospital, pop_data, distances, weights):
# Create polygons
polygons = dijkstra_cca_polygons(G, hospital['nearest_osm'], distances)
# Calculate accessibility measurements
num_pops = []
for j in pop_data.index:
point = pop_data['geometry'][j]
# Multiply polygons by weights
for k in range(len(polygons)):
if len(polygons[k]) > 0: # To exclude the weirdo (convex hull is not polygon)
if (point.within(polygons[k].iloc[0]["geometry"])):
num_pops.append(pop_data['pop'][j]*weights[k])
total_pop = sum(num_pops)
for i in range(len(distances)):
polygons[i]['time']=distances[i]
polygons[i]['total_pop']=total_pop
polygons[i]['hospital_icu_beds'] = float(hospital['Adult ICU'])/polygons[i]['total_pop'] # proportion of # of beds over pops in 10 mins
polygons[i]['hospital_vents'] = float(hospital['Total Vent'])/polygons[i]['total_pop'] # proportion of # of beds over pops in 10 mins
polygons[i].crs = { 'init' : 'epsg:4326'}
polygons[i] = polygons[i].to_crs({'init':'epsg:32616'})
print('{:.0f}'.format(_thread_id), end=" ", flush=True)
return(_thread_id, [ polygon.copy(deep=True) for polygon in polygons ])
Parallel implementation of accessibility measurement.
Args:
Returns:
def hospital_acc_unpacker(args):
return hospital_measure_acc(*args)
# WHERE THE RESULTS ARE POOLED AND THEN REAGGREGATED
def measure_acc_par (hospitals, pop_data, network, distances, weights, num_proc = 4):
catchments = []
for distance in distances:
catchments.append(gpd.GeoDataFrame())
pool = mp.Pool(processes = num_proc)
hospital_list = [ hospitals.iloc[i] for i in range(len(hospitals)) ]
print("Calculating", len(hospital_list), "hospital catchments...\ncompleted number:", end=" ")
results = pool.map(hospital_acc_unpacker, zip(range(len(hospital_list)), hospital_list, itertools.repeat(pop_data), itertools.repeat(distances), itertools.repeat(weights)))
pool.close()
results.sort()
results = [ r[1] for r in results ]
for i in range(len(results)):
for j in range(len(distances)):
catchments[j] = catchments[j].append(results[i][j], sort=False)
return catchments
Calculates and aggregates accessibility statistics for one catchment on our grid file.
Args:
Returns:
from collections import Counter
def overlap_calc(_id, poly, grid_file, weight, service_type):
value_dict = Counter()
if type(poly.iloc[0][service_type])!=type(None):
value = float(poly[service_type])*weight
intersect = gpd.overlay(grid_file, poly, how='intersection')
intersect['overlapped']= intersect.area
intersect['percent'] = intersect['overlapped']/intersect['area']
intersect=intersect[intersect['percent']>=0.5]
intersect_region = intersect['id']
for intersect_id in intersect_region:
try:
value_dict[intersect_id] +=value
except:
value_dict[intersect_id] = value
return(_id, value_dict)
def overlap_calc_unpacker(args):
return overlap_calc(*args)
Calculates how all catchment areas overlap with and affect the accessibility of each grid in our grid file.
Args:
Returns:
def overlapping_function (grid_file, catchments, service_type, weights, num_proc = 4):
grid_file[service_type]=0
pool = mp.Pool(processes = num_proc)
acc_list = []
for i in range(len(catchments)):
acc_list.extend([ catchments[i][j:j+1] for j in range(len(catchments[i])) ])
acc_weights = []
for i in range(len(catchments)):
acc_weights.extend( [weights[i]]*len(catchments[i]) )
results = pool.map(overlap_calc_unpacker, zip(range(len(acc_list)), acc_list, itertools.repeat(grid_file), acc_weights, itertools.repeat(service_type)))
pool.close()
results.sort()
results = [ r[1] for r in results ]
service_values = results[0]
for result in results[1:]:
service_values+=result
for intersect_id, value in service_values.items():
grid_file.loc[grid_file['id']==intersect_id, service_type] += value
return(grid_file)
Normalizes our result (Geodataframe) for a given resource (res).
def normalization (result, res):
result[res]=(result[res]-min(result[res]))/(max(result[res])-min(result[res]))
return result
Imports all files we need to run our code and pulls the Illinois network from OSMNX if it is not present (will take a while).
NOTE: even if we calculate accessibility for just Chicago, we want to use the Illinois network (or at least we should not use the Chicago network) because using the Chicago network will result in hospitals near but outside of Chicago having an infinite distance (unreachable because roads do not extend past Chicago).
Args:
Returns:
def output_map(output_grid, base_map, hospitals, resource):
ax=output_grid.plot(column=resource, cmap='PuBuGn',figsize=(18,12), legend=True, zorder=1)
# Next two lines set bounds for our x- and y-axes because it looks like there's a weird
# Point at the bottom left of the map that's messing up our frame (Maja)
ax.set_xlim([314000, 370000])
ax.set_ylim([540000, 616000])
base_map.plot(ax=ax, facecolor="none", edgecolor='gray', lw=0.1)
hospitals.plot(ax=ax, markersize=10, zorder=1, c='blue')
Below you can customize the input of the model:
import ipywidgets
from IPython.display import display
processor_dropdown = ipywidgets.Dropdown( options=[("1", 1), ("2", 2), ("3", 3), ("4", 4)],
value = 4, description = "Processor: ")
population_dropdown = ipywidgets.Dropdown( options=[("Population at Risk", "pop"), ("COVID-19 Patients", "covid") ],
value = "pop", description = "Population: ")
resource_dropdown = ipywidgets.Dropdown( options=[("ICU Beds", "hospital_icu_beds"), ("Ventilators", "hospital_vents") ],
value = "hospital_icu_beds", description = "Resource: ")
hospital_dropdown = ipywidgets.Dropdown( options=[("All hospitals", "hospitals"), ("Subset", "hospital_subset") ],
value = "hospitals", description = "Hospital:")
display(processor_dropdown,population_dropdown,resource_dropdown,hospital_dropdown)
Dropdown(description='Processor: ', index=3, options=(('1', 1), ('2', 2), ('3', 3), ('4', 4)), value=4)
Dropdown(description='Population: ', options=(('Population at Risk', 'pop'), ('COVID-19 Patients', 'covid')), …
Dropdown(description='Resource: ', options=(('ICU Beds', 'hospital_icu_beds'), ('Ventilators', 'hospital_vents…
Dropdown(description='Hospital:', options=(('All hospitals', 'hospitals'), ('Subset', 'hospital_subset')), val…
if population_dropdown.value == "pop":
pop_data = pop_centroid(atrisk_data, population_dropdown.value)
elif population_dropdown.value == "covid":
pop_data = pop_centroid(covid_data, population_dropdown.value)
distances=[10,20,30] # Distances in travel time
weights=[1.0, 0.68, 0.22] # Weights where weights[0] is applied to distances[0]
# Other weighting options representing different distance decays
# weights1, weights2, weights3 = [1.0, 0.42, 0.09], [1.0, 0.75, 0.5], [1.0, 0.5, 0.1]
# it is surprising how long this function takes just to calculate centroids.
# why not do it with the geopandas/pandas functions rather than iterating through every item?
Pop Centroid File Setting: 100%|██████████| 3121/3121 [03:37<00:00, 14.35it/s]
If you have already run this code and changed the Hospital selection, rerun the Load Hospital Data block.
# Set hospitals according to hospital dropdown
if hospital_dropdown.value == "hospital_subset":
hospitals = hospital_setting(hospitals[:1], G)
else:
hospitals = hospital_setting(hospitals, G)
resources = ["hospital_icu_beds", "hospital_vents"] # resources
# this is also slower than it needs to be; if network nodes and hospitals are both
# geopandas data frames, it should be possible to do a much faster spatial join rather than iterating through every hospital
Find the nearest network node from hospitals: 100%|██████████| 66/66 [01:17<00:00, 1.17s/it]
hospital setting is done
# Create point geometries for entire graph
# what is the pupose of the following two lines? Can this be deleted?
# for node, data in G.nodes(data=True):
# data['geometry']=Point(data['x'], data['y'])
# which hospital to visualize?
fighosp = 4
# Create catchment for hospital 0
poly = dijkstra_cca_polygons(G, hospitals['nearest_osm'][fighosp], distances)
# Reproject polygons
for i in range(len(poly)):
poly[i].crs = { 'init' : 'epsg:4326'}
poly[i] = poly[i].to_crs({'init':'epsg:32616'})
# Reproject hospitals
# Possible to map from the hospitals data rather than creating hospital_subset?
hospital_subset = hospitals.iloc[[fighosp]].to_crs(epsg=32616)
fig, ax = plt.subplots(figsize=(12,8))
min_10 = poly[0].plot(ax=ax, color="royalblue", label="10 min drive")
min_20 = poly[1].plot(ax=ax, color="cornflowerblue", label="20 min drive")
min_30 = poly[2].plot(ax=ax, color="lightsteelblue", label="30 min drive")
hospital_subset.plot(ax=ax, color="red", legend=True, label = "hospital")
# Add legend
ax.legend()
<matplotlib.legend.Legend at 0x7f680514d160>
poly
[ geometry 0 POLYGON ((443394.930 4617198.022, 443187.529 4..., geometry 0 POLYGON ((433671.698 4613633.717, 431537.531 4..., geometry 0 POLYGON ((431102.988 4600288.479, 416197.951 4...]
%%time
catchments = measure_acc_par(hospitals, pop_data, G, distances, weights, num_proc=processor_dropdown.value)
Calculating 66 hospital catchments... completed number: 5 0 15 10 6 1 11 16 2 7 12 17 3 8 13 18 4 9 14 19 20 25 30 35 21 26 31 36 22 27 37 32 23 28 38 33 24 29 39 34 40 45 50 55 41 46 51 56 42 47 52 57 43 48 58 53 44 49 59 54 60 65 61 62 63 64 CPU times: user 2.21 s, sys: 392 ms, total: 2.6 s Wall time: 2min 5s
%%time
for j in range(len(catchments)):
catchments[j] = catchments[j][catchments[j][resource_dropdown.value]!=float('inf')]
result=overlapping_function(grid_file, catchments, resource_dropdown.value, weights, num_proc=processor_dropdown.value)
CPU times: user 6.25 s, sys: 344 ms, total: 6.59 s Wall time: 17.2 s
%%time
result = normalization (result, resource_dropdown.value)
CPU times: user 3.15 ms, sys: 13 µs, total: 3.17 ms Wall time: 2.79 ms
result.head()
left | top | right | bottom | id | area | geometry | hospital_icu_beds | |
---|---|---|---|---|---|---|---|---|
0 | 440843.416087 | 4.638515e+06 | 441420.766356 | 4.638015e+06 | 4158 | 216661.173 | POLYGON ((440843.416 4638265.403, 440987.754 4... | 0.936865 |
1 | 440843.416087 | 4.638015e+06 | 441420.766356 | 4.637515e+06 | 4159 | 216661.168 | POLYGON ((440843.416 4637765.403, 440987.754 4... | 0.936865 |
2 | 440843.416087 | 4.639515e+06 | 441420.766356 | 4.639015e+06 | 4156 | 216661.169 | POLYGON ((440843.416 4639265.403, 440987.754 4... | 0.961384 |
3 | 440843.416087 | 4.639015e+06 | 441420.766356 | 4.638515e+06 | 4157 | 216661.171 | POLYGON ((440843.416 4638765.403, 440987.754 4... | 0.923061 |
4 | 440843.416087 | 4.640515e+06 | 441420.766356 | 4.640015e+06 | 4154 | 216661.171 | POLYGON ((440843.416 4640265.403, 440987.754 4... | 0.963639 |
to be written.
%%time
hospitals = hospitals.to_crs({'init': 'epsg:26971'})
result = result.to_crs({'init': 'epsg:26971'})
output_map(result, pop_data, hospitals, resource_dropdown.value)
CPU times: user 1.81 s, sys: 369 ms, total: 2.18 s Wall time: 1.79 s
Classified Accessibility Outputs
to be written.
Luo, W., & Qi, Y. (2009). An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. Health & place, 15(4), 1100-1107.